วันเสาร์ที่ 15 สิงหาคม พ.ศ. 2552

คุณสมบัติของแสง

คุณสมบัติของแสง

แสงจะมีคุณสมบัติที่สำคัญ 4 ข้อ ได้แก่

1. การเดินทางเป็นเส้นตรง (Rectilinear propagation)

2. การหักเห (Refraction)

3. การสะท้อน (Reflection)

4. การกระจาย (Dispersion)

1.การเดินทางแสงเป็นเส้นตรง

ในตัวกลางที่มีค่าดัชนีการหักเห (refractive index ; n)

ของแสงเท่ากัน แสงจะเดินทางเป็นเส้นตรงโดยค่า n สามารถหาได้จากสมการ 2.1
(2.1)




โดยที่ c คือ ความเร็วของแสงในสูญญากาศ

v คือ ความเร็วของแสงในตัวกลางนั้นๆ



รูปที่ 2.1 ช่วงแถบความถี่แม่เหล็กไฟฟ้าที่ใช้ในการสื่อสารเส้นใยแสง

ตัวกลาง ค่าดัชนีการหักเห
อากาศ 1
เพชร 2.42
แก้ว 1.5 - 1.9
เส้นใยแสง 1.5
น้ำ 1.33

2.2 ค่าดัชนีการหักเหโดยปกติของตัวกลางต่างๆ

2.การสะท้อน

การสะท้อนของแสงสามารถแบ่งออกได้เป็น 2 ลักษณะ คือ

» การสะท้อนแบบปกติ (Regular reflection) จะเกิดขึ้นเมื่อแสงตกกระทบกับวัตถุที่มีผิวเรียบมันวาว

ดังรูปที่ 2.2
รูปที่ 2.2 การสะท้อนแบบปกติ

» การสะท้อนแบบกระจาย (Diffuse reflection) จะเกิดขึ้นเมื่อแสงตกกระทบวัตถุที่มีผิวขรุขระ

ดังรูปที่ 2.3
รูปที่ 2.3 การสะท้อนแบบกระจาย

โดยการสะท้อนของแสงไม่ว่าจะเป็นแบบใดก็ตามจะต้องเป็นไปตามกฎการสะท้อนของแสงที่ว่า

"มุมสะท้อนเท่ากับมุมตกกระทบ"
3.การหักเห

การหักเหของแสงจะเกิดขึ้นเมื่อแสงเดินทางผ่านตัวกลางที่มีค่าดัชนีการหักเหไม่เท่ากัน โดยลำแสงที่ตกกระทบจะต้องไม่ทำมุมฉากกับรอยต่อระหว่างตัวกลางทั้งสอง และมุมตกกระทบต้องมีค่าไม่เกินมุมวิกฤต (Critical angel ; )

โดยการหักเหของแสงสามารถแบ่งออกได้เป็น 3 กรณี คือ

1.» n1 <> รูปที่ 2.5 การหักเหของแสงกรณี n1 <>
จากรูปที่ 2.5 ระยะเวลาที่แสงใช้ในการเดินทางในช่วง BC จะเท่ากับระยะเวลาที่แสงใช้ในการเดินทางในช่วง B'C' ซึ่งสามารถเขียนเป็นสมการได้ดังสมการ

2.2 (2.2)

จากสมการ (2.2) จะได้ (2.3)

เมื่อพิจารณารูปสามเหลี่ยม BCC' และ BB'C' จะได้ความสัมพันธ์ทางตรีโกณดังนี้


(2.4)

และ

(2.5)


นำสมการ (2.4) และ (2.5) แทนลงไปในสมการ (2.3) จะได้


(Snell's Law)


2.» n1 > n2 แสงจะหักเหออกจากเส้นปกติ


รูปที่ 2.6 การหักเหของแสงกรณี n1 > n2


จากรูปที่ 2.6 จะเห็นว่าระยะทาง BC มีค่ามากกว่า B'C' เนื่องจากระยะทาง BC เป็นการเดินทางของแสงในตัวกลางที่มีค่าดัชนีการหักเหน้อยกว่า ดังนั้นในระยะเวลาเท่ากันแสงจะสามารถเดินทางได้มากกว่า



3.» การสะท้อนกลับหมด (Total Internal Reflection)



การเกิดการสะท้อนกลับหมดของแสงจะเกิดขึ้นได้ก็ต่อเมื่อค่าดัชนีการหักเหของตัวกลางที่ 1 มีค่ามากกว่าดัชนีการหักเหของตัวกลางที่ 2 (n1 > n2) และ ซึ่งจะส่งผลให้ มีค่าเท่ากับ หรือมากกว่าโดยเราสามารถหาค่า ได้จาก Snell's Law


เมื่อ จะเกิดการสะท้อนกลับหมดของแสงซึ่งจะได้




ดังนั้นจะได



รูปที่ 2.7 การสะท้อนกลับหมดของแสง



ในรูปที่ 2.8 แสดงตัวอย่างของการสะท้อนกลับหมดของแสง โดยการมองเครื่องบินที่อยู่ในอากาศจากใต้น้ำ ซึ่งจะสามารถมองเห็นเครื่องบินได้ก็ต่อเมื่อเรามองทำมุมกับผิวน้ำมากกว่า ค่าดังกล่าวได้มาจากการคำนวณมุมวิกฤตดังนี้
รูปที่ 2.8 ตัวอย่างการสะท้อนกลับหมดของแสง


จากสมการ แทนค่า n2=1 และ n1=1.33 จะได้



ดังนั้นการมองจะต้องทำมุมกับเส้นปกติน้อยกว่า จึงจะสามารถมองเห็นเครื่องบินได้ ถ้าเรามองทำมุมกับเส้นปกติเท่ากับหรือมากกว่า จะทำให้เกิดการสะท้อนกลับหมดของแสงจึงไม่สามารถมองเห็นเครื่องบินได้ ซึ่งปรากฏการณ์การสะท้อนกลับหมดของแสงนี้จะทำให้แสงสามารถเดินทางไปในเส้นใยแสงได้



4.การกระจาย

ในการพิจารณาการเดินทางของแสงที่ผ่านๆ มา เราสมมติให้แสงที่เดินทางมีความยาวคลื่นเพียงความยาวคลื่นเดียวซึ่งเราเรียกแสงชนิดนี้ว่า "Monochromatic" แต่โดยธรรมชาติของแสงแล้วจะประกอบด้วยความยาวคลื่นหลายความยาวคลื่นผสมกัน ซึ่งเราเรียกว่า "Polychromatic" ดังแสดงในรูปที่ 2.9 จะเห็นว่าแสงสีขาวจะสามารถแยกออกเป็นแสงสีต่างๆ (ความยาวคลื่นต่างๆ) ได้ถึง 6 ความยาวคลื่นโดยใช้แท่งแก้วปริซึม ซึ่งกระบวนการที่เกิดการแยกแสงออกแสงออกมานี้ เราเรียกว่า "การกระจาย (Dispersion)"

การกระจายของแสงนี้จะตั้งอยู่บนความจริงที่ว่า "แสงที่มีความยาวคลื่นต่างกันจะเดินทางด้วยความเร็วที่ต่างกันในตัวกลางเดียวกัน"


นอกจากคุณสมบัติดังกล่าวทั้ง 4 ข้อแล้ว แสงยังมีคุณสมบัติอื่นๆ อีกคือ

1. แสงจัดเป็นคลื่นแม่เหล็กไฟฟ้า (Electromagnetic wave) ชนิดหนึ่ง

2. คลื่นแสงเป็นคลื่นมี่มีการเปลี่ยนแปลงตามขวาง (Transverse wave)

ซึ่งทั้ง 2 กรณีนี้ ทำให้เราสามารถสรุปได้ว่าคลื่นแสงเป็นคลื่น TEM โดยลักษณะการเดินทางของแสงแสดงในรูปที่ 2.10
รูปที่ 2.10 การเดินทางของคลื่นแสง

7 ความคิดเห็น: